A Formal Total Synthesis of Roseophilin: Cyclopentannelation Approach to the Macrocyclic Core

Paul E. Harrington and Marcus A. Tius*

*Department of Chemistry, Uni*V*ersity of Hawaii at Manoa, 2545 The Mall, Honolulu, Hawaii 96822*

tius@gold.chem.hawaii.edu

Received June 10, 1999

ORGANIC LETTERS 1999 Vol. 1, No. 4 ⁶⁴⁹-**⁶⁵¹**

The formal total synthesis of the macrocyclic core of roseophilin 4 has been accomplished in 12 steps from 5-hexenal 8. The cyclopentannelation reaction was used to form the aliphatic five-membered ring of 3. Diene 2 was assembled by means of a Stetter reaction. Ring-closing metathesis of 2, reduction, and Knorr reaction of the 1,4-diketone 5 gave the ketopyrrole 3.

Roseophilin **4**, a structurally unique metabolite, was recently isolated from the culture broth of *Streptomyces griseoviridis* by Seto et al.¹ It shows high activity against K562 and KB cell lines in the sub-micromolar range. The high activity coupled with the unique structure has made roseophilin **4** a popular target for synthesis.2 The first total synthesis was accomplished by Fürstner et al.^{2f} Their concise synthesis utilized **3** as an advanced intermediate that, after protection of the pyrrole nitrogen atom with a SEM group, was coupled with the pyrrolylfuran side chain. Deprotection followed by loss of water gave racemic roseophilin **4**. During the same period, Fuchs reported a synthesis of the macrocyclic core via a difficult ring-closing metathesis reaction of a conformationally biased diene.^{2c}

Our retrosynthetic approach to the roseophilin core **3** is shown in Scheme 1. A potentially challenging step in the

synthesis, the macrocyclization via a ring-closing metathesis reaction,3 was not envisioned to be problematic for the

⁽¹⁾ Hayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 2701-2704.

^{(2) (}a) Nakatani, S.; Kirihara, M.; Yamada, K.; Terashima, S. *Tetrahedron Lett.* **¹⁹⁹⁵**, *³⁶*, 8461-8464. (b) Kim, S. H.; Fuchs, P. L. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, 2545-2548. (c) Kim, S. H.; Figueroa, I.; Fuchs, P. L. *Tetrahedron Lett.* **1997**, *38*, 2601-2604. (d) Fürstner, A.; Weintritt, H. *J. Am. Chem.*
Soc. **1997**. *119.* 2944-2945. (e) Luker. T.: Koot. W.-J.: Hiemstra. H.: *Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 2944-2945. (e) Luker, T.; Koot, W.-J.; Hiemstra, H.; Speckamp, W. N. *J. Org. Chem.* **1998**, 63, 220–221. (f) Fürstner, A.; Weintritt, H. *J. Am. Chem. Soc.* **1998**, *120*, 2817–2825. (g) Mochizuki Weintritt, H. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 2817-2825. (g) Mochizuki, T.; Itoh, E.; Shibata, N.; Nakatani, S.; Katoh, T.; Terashima, S. *Tetrahedron Lett.* **1998**, 39, 6911-6914. (h) Fürstner, A.; Gastner, T.; Weintritt, H. *J. Org. Chem.* **¹⁹⁹⁹**, *⁶⁴*, 2361-2366.

relatively unstrained, conformationally flexible diene **2**. Two key steps in the synthesis, the cyclopentannelation reaction and the attachment of the 7-carbon alkene fragment, provide diene **2**. The five-membered ring formation by the cyclopentannelation reaction,4 a variant of the Nazarov cyclization, allows for the rapid assembly of the substituted α -methylenecyclopentenone. Peterson olefination provides the α , β unsaturated aldehyde **6** with the desired *E* stereochemistry.

The synthesis starts with the formation of the *tert*butylimine of 5-hexenal⁵ 7 in 94% yield (Scheme 2).⁶

(a) t -BuNH₂, rt, 94%; (b) LDA, TMSCl, THF, -78 to $+10$ °C; (c) LDA, *i*-PrCHO, -78 to $+10$ °C; (d) (COOH)₂, THF, H₂O, 71% (three steps); (e) $NaClO₂$, $KH₂PO₄$, 2-methyl-2-butene; (f) $CBr₄$, PPh₃, morpholine, 88% (two steps); (g) (i) α -(methoxy)methoxy- α -lithioallene, THF, -78 °C; (ii) AcOH; (h) BzCl, Et₃N, 49% (two steps); (i) 6-heptenal, Et₃N, 3-benzyl-5-(hydroxyethyl)-4-methylthiazolium chloride, 1,4-dioxane, 60%; (j) Grubbs' catalyst, 0.0005 M, 40 °C, 90%; (k) H₂, Pd/C, THF, 92%; (l) (NH₄)₂CO₃, propionic acid, 140 °C, 10 h, 52%.

Conversion of 7 to the α -TMS derivative was accomplished by deprotonation with LDA followed by addition of TMSCl.⁷

(6) Campbell, K. N.; Sommers, A. H.; Campbell, B. K. *J. Am. Chem. Soc.* **¹⁹⁴⁴**, *⁶⁶*, 82-84.

The hydrolytically labile α -TMS imine of 7 was carried on without purification after aqueous workup. Deprotonation with LDA followed by addition of isobutyraldehyde gave the α , β -unsaturated imine after aqueous workup. Imine hydrolysis with oxalic acid in THF/H₂O $(1:1)$ and column chromatography gave the aldehyde **6** in 71% yield as a single isomer following column chromatography. Oxidation of **6** under standard conditions⁸ with NaClO₂ and 2-methyl-2butene with a KH_2PO_4 buffer gave the α,β -unsaturated acid, which was used crude in the next step. Amide formation with CBr_4 , PPh_3 , and morpholine⁹ gave 1 in 88% yield over two steps from aldehyde **6**. Formation of the protected α -methylenecyclopentenone **9** was accomplished via addition of α -(methoxy)methoxy- α -lithioallene at -78 °C to the morpholine amide¹⁰ 1 followed by quenching with a solution of acetic acid in THF at -78 °C. Cyclization to the α -methylenecyclopentenone occurs spontaneously during workup without addition of strong acid.11 Protection of the hydroxy group as the benzoate ester gave the α -methylenecyclopentenone **9** in 49% yield from morpholine amide **1**. Addition of the acyl carbanion equivalent of 6-heptenal to cyclopentenone **9** could have been accomplished in a number of different ways.¹² The addition was accomplished in a single step by means of the underutilized Stetter reaction.¹³ Heating a mixture of **9** and 2 equiv of 6-heptenal¹⁴ in the presence of catalytic Et_3N and 3-benzyl-5-(hydroxyethyl)-4-methylthiazolium chloride in 1,4-dioxane gave *trans*diene **2**¹⁵ in 60% yield.16 It should be noted that loss of the benzoate under these conditions, which was envisioned to be a potential problem, did not occur to any appreciable extent. Diene **2** was accompanied by 9% of the cis isomer, which was easily separated by column chromatography. Additionally, no products arising from addition of 6-heptenal to the less reactive endocyclic *â*-carbon were isolated.

Two complementary strategies suggest themselves for the conversion of **2** to **3**: ring-closing metathesis, reduction,

- (9) Einhorn, J.; Einhorn, C.; Luche, J.-L. *Synth. Commun.* **1990**, *20*, ¹¹⁰⁵-1112.
- (10) Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. *Synlett* **1997**, ¹⁴¹⁴-1416.
- (11) Tius, M. A.; Kwok, C.-K.; Gu, X.-q.; Zhao, C. *Synth. Commun.* **¹⁹⁹⁴**, *²⁴*, 871-885.
- (12) For a review of acyl anion equivalents, see: Albright, J. D. *Tetrahedron* **¹⁹⁸³**, *³⁹*, 3207-3233. (13) For a review of the Stetter reaction, see: Stetter, H.; Kuhlmann, H.

⁽³⁾ For reviews of the ring-closing metathesis reaction see: (a) Grubbs, R. H.; Chang, S. *Tetrahedron* **¹⁹⁹⁸**, *⁵⁴*, 4413-4450. (b) Nicolaou, K. C.; King, N. P.; He, Y. In *Topics in Organometallic Chemistry*; Fürstner, A., Ed.; Springer-Verlag: Berlin, Heidelberg, 1998; Vol. 1, pp 73-104.

⁽⁴⁾ For recent examples of the use of the cyclopentannelation reaction in synthesis, see: (a) Tius, M. A.; Hu, H.; Kawakami, J. K.; Busch-Petersen, J. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 5971-5976. (b) Tius, M. A.; Busch-Petersen, J.; Yamashita, M. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 4219-4222. For related work involving Nazarov cyclizations of allenyl ketones, see: Hashmi, A. S. K.; Bats, J. W.; Choi, J.-H.; Schwarz, L. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 7491- 7494.

⁽⁵⁾ Parry, R. J.; Ju, S.; Baker, B. J. *J*. *Labelled Compds. Radiopharm.* **¹⁹⁹¹**, *²⁹*, 633-643.

^{(7) (}a) Kang, S. H.; Jun, H.-S.; Youn, J.-H. *Synlett* **¹⁹⁹⁸**, 1045-1046. (b) Schlessinger, R. H.; Poss, M. A.; Richardson, S.; Lin, P. *Tetrahedron Lett.* **¹⁹⁸⁵**, *²⁶*, 2391-2394. (c) Corey, E. J.; Enders, D.; Bock, M. G. *Tetrahedron Lett*. **¹⁹⁷⁶**, *²⁷*, 7-10.

^{(8) (}a) Kraus, G. A.; Taschner, M. J. *J. Org. Chem*. **¹⁹⁸⁰**, *⁴⁵*, 1175- 1176. (b) Lindgren, B. O.; Nilsson, T. *Acta Chem. Scand.* **¹⁹⁷³**, *²⁷*, 888- 890.

In *Organic Reactions*; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1991; Vol. 40, pp 407-496. See also: Stetter, H.; Haese, W. *Chem. Ber.* **¹⁹⁸⁴**, *¹¹⁷*, 682-693.

followed by Knorr reaction, or the reverse sequence. Fuchs has observed the exclusive formation of dimeric products from the ring-closing metathesis reaction of an intermediate in which the bicyclic core structure is present.^{2c} To circumvent the problem, Fuchs performed the ring-closing metathesis reaction on a conformationally biased diene. The control was achieved by the use of a strategically placed OTIPS group. In view of Fuchs' result, performing the ring-closing metathesis reaction on the more conformationally mobile **2** seemed the more attractive approach. In the event, heating a 0.0005 M solution of **2** with 30 mol % of Grubbs' catalyst gave macrocycle **10** in 90% yield as a cis,trans mixture.17 Catalytic hydrogenation of the mixture gave the 1,4-diketone **5** in 92% yield. Formation of the ketopyrrole **3**, the intermediate in Fürstner's synthesis,^{2f} was accomplished by heating a 0.04 M solution of **5** and 35 equiv of ammonium carbonate in propionic acid in a sealed tube.18 The ketopyrrole **3** was isolated in 52% yield after 10 h at 140 °C. The first step in this process is loss of the benzoate ester function from **5**. When the reaction was sampled prior to completion, only benzamide and ketoenol **11** were present.

(17) Ring-closing metathesis of the cis isomer of **2** proceeded in much lower yield (ca. 10%) under the same conditions.

That ketoenol **11** has the structure shown was proven by isolation, followed by benzoylation, which returned **5** as the exclusive product. It was subsequently determined that hydrolysis of the benzoate group in **2** led to ketoenol **12**. In both cases, ketoenols **11** and **12** were strongly favored $($ >95%) as evidenced by ¹H NMR. The reason for the preferential enolization of one of the two keto groups in **11** and **12** is not obvious. In the case of **11**, it is likely that the regiochemistry for the enolization is critical for the success of the Knorr reaction.

Exposure of **5** to benzylamine in propionic acid at 200 °C for 10 d produced *N*-benzylpyrrole **13**, an intermediate in the Fürstner synthesis of roseophilin, in 34% yield. At the end of the reaction, only a small amount (5%) of 11 remained in the mixture. Lower temperatures and longer reaction times did not improve the yield of **13**. Additionally, the use of Lewis acids or high pressure (13 kbar) did not result in an improvement in the yield. The stark difference between the two reactions leading to **3** and **13**, respectively, will be discussed in a future publication.

In conclusion, we have completed a convergent 12 step synthesis of the macrocyclic core of roseophilin. The ketopyrrole 3 junctions with Fürstner's synthesis; therefore, this work represents a formal total synthesis of racemic roseophilin **4**. The overall yield of **3**, 7.4%, is comparable to Fürstner's overall yield of 6.6% .^{2h} Work in progress is directed toward the development of an enantioselective synthesis of **3**.

Acknowledgment. We thank the National Institutes of Health (GM57873) for generous support. M.A.T. thanks the Japan Society for the Promotion of Science for a fellowship in 1998. We thank Professor Phil Fuchs for kindly providing spectra of compound **3**.

Supporting Information Available: Experimental procedures for compounds **¹**-**3**, **⁵**-**7**, **⁹**, **¹⁰**, and **¹³**. IR, 1H NMR, 13C NMR, and mass spectra and full characterization for compounds $1-3$, $5-7$, 9, and 13. This material is available free of charge via the Internet at http://pubs.acs.org. OL990124K

^{(14) 6-}Heptenal was prepared in 65% yield by reduction of commercially available 6-cyano-1-hexene with DIBAL.

⁽¹⁵⁾ Stereochemistry was determined by NOE.

⁽¹⁶⁾ **Diene 2.** To a mixture of cyclopentenone **9** (150 mg, 0.483 mmol) and 6-heptenal (120 mg, 1.07 mmol) was added 1.0 mL of a solution of 3-benzyl-5-(hydroxyethyl)-4-methylthiazolium chloride (42 mg, 0.16 mmol) and triethylamine (100 *µ*L, 72.6 mg, 0.717 mmol) in 1,4-dioxane (2.9 mL). The reaction mixture was heated to 70 °C in a sealed tube. After 18 h, the reaction mixture was diluted with Et₂O and water. The aqueous phase was extracted with ether $(3\times)$, and the combined organic extracts were washed with brine $(1\times)$ and dried over MgSO₄. Purification by flash column chromatography on silica (EtOAc gradient in hexanes) gave the *trans*-diene **2** (123 mg, 60% yield) as a colorless oil: $R_f = 0.16$ (10% EtOAc in hexanes); IR (neat) 2975, 2945, 1750, 1725, 1665, 1265, 1100, 1070, 715 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (dm, $J = 7.1$ Hz, 2H), 7.62 (tt, cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (dm, *J* = 7.1 Hz, 2H), 7.62 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 5.87–5.72 (m, 2H), 5.09– *J* = 7.4, 1.2 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 5.87-5.72 (m, 2H), 5.09-
4 92 (m, 4H), 2.80-2.73 (m, 2H), 2.69-2.57 (m, 3H), 2.43 (t, *J* = 7.3 Hz 4.92 (m, 4H), 2.80–2.73 (m, 2H), 2.69–2.57 (m, 3H), 2.43 (t, *J* = 7.3 Hz,
2H) 2.38–2.18 (m, 4H) 2.05 (a br, *J* = 7.2 Hz, 2H) 1.59 (quint br, *J* = 2H), 2.38-2.18 (m, 4H), 2.05 (q br, $J = 7.2$ Hz, 2H), 1.59 (quint br, $J = 7.6$ Hz, 2H), 1.43-1.33 (m, 2H), 1.06 (d, $J = 6.8$ Hz, 3H), 0.85 (d, $J = 6.8$) 7.6 Hz, 2H), 1.43–1.33 (m, 2H), 1.06 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8
Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 208.0, 200.8, 164.2, 163.3, 145.6, 138.4, 136.8, 133.6, 130.3, 128.6, 128.5, 115.8, 114.6, 49.7, 44.3, 43.0, 40.7, 33.5, 30.6, 28.44, 28.41, 26.7, 23.2, 21.1, 16.3; mass spectrum *m*/*z* 190 (20), 106 (15), 105 (100), 77 (45); exact mass calcd for C27H34O4 422.2457, found 422.2467.

⁽¹⁸⁾ Wasserman, H. H.; Bailey, D. T. *J. Chem. Soc., Chem. Commun.* **¹⁹⁷⁰**, 107-108.